Adaptive Filter LMS.
More...
#include <smoother.hpp>
|
virtual | ~smootherALNF () |
|
bool | setup (const real_t a, const real_t m, const size_t wsize, real_t *window, real_t *weights, real_t *w1=nullptr) |
| Setup an initialize the Adaptive Filter LMS.
|
|
template<size_t windowSize> |
bool | setup (const real_t a, const real_t m, real_t(&window)[windowSize], real_t(&weights)[windowSize], real_t(&w1)[windowSize]) |
| Setup an initialize the Adaptive Filter LMS.
|
|
template<size_t windowSize> |
bool | setup (const real_t a, real_t(&window)[windowSize], real_t(&weights)[windowSize]) |
| Setup an initialize the Adaptive Filter LMS.
|
|
real_t | smooth (const real_t x) override |
| Perform the smooth operation recursively for the input signal x.
|
|
virtual | ~smoother () |
|
bool | isInitialized (void) const |
| Check if the smoother filter is initialized.
|
|
bool | reset (void) |
| Reset the the smoother filter.
|
|
◆ ~smootherALNF()
virtual qlibs::smootherALNF::~smootherALNF |
( |
| ) |
|
|
inlinevirtual |
◆ setup() [1/3]
Setup an initialize the Adaptive Filter LMS.
- Parameters
-
[in] | a | Learning rate [ 0 < a < 1 ] |
[in] | m | Momentum [ 0 < m < 1 ] |
[in] | wsize | The size of the window array |
[in] | window | An array to store the window samples. |
[in] | weights | An array to store the filter weights |
[in] | w1 | An array to keep previous estimated wights. To ignore pass nullptr as argument. |
- Returns
true
on success, otherwise return false
.
◆ setup() [2/3]
template<size_t windowSize>
bool qlibs::smootherALNF::setup |
( |
const real_t | a, |
|
|
const real_t | m, |
|
|
real_t(&) | window[windowSize], |
|
|
real_t(&) | weights[windowSize], |
|
|
real_t(&) | w1[windowSize] ) |
|
inline |
Setup an initialize the Adaptive Filter LMS.
- Parameters
-
[in] | a | Learning rate [ 0 < a < 1 ] |
[in] | m | Momentum [ 0 < m < 1 ] |
[in] | window | An array to store the window samples. |
[in] | weights | An array to store the filter weights |
[in] | w1 | An array to keep previous estimated wights. |
- Returns
true
on success, otherwise return false
.
◆ setup() [3/3]
template<size_t windowSize>
bool qlibs::smootherALNF::setup |
( |
const real_t | a, |
|
|
real_t(&) | window[windowSize], |
|
|
real_t(&) | weights[windowSize] ) |
|
inline |
Setup an initialize the Adaptive Filter LMS.
- Parameters
-
[in] | a | Learning rate [ 0 < a < 1 ] |
[in] | window | An array to store the window samples. |
[in] | weights | An array to store the filter weights. |
- Returns
true
on success, otherwise return false
.
◆ smooth()
Perform the smooth operation recursively for the input signal x.
- Precondition
- Instance must be previously initialized
- Parameters
-
[in] | x | A sample of the input signal. |
- Returns
- The smoothed output.
Implements qlibs::smoother.